1,396 research outputs found

    Strain-induced pseudo-magnetic field for novel graphene electronics

    Full text link
    Particular strain geometry in graphene could leads to a uniform pseudo-magnetic field of order 10T and might open up interesting applications in graphene nano-electronics. Through quantum transport calculations of realistic strained graphene flakes of sizes of 100nm, we examine possible means of exploiting this effect for practical electronics and valleytronics devices. First, we found that elastic backscattering at rough edges leads to the formation of well defined transport gaps of order 100meV under moderate maximum strain of 10%. Second, the application of a real magnetic field induced a separation, in space and energy, of the states arising from different valleys, leading to a way of inducing bulk valley polarization which is insensitive to short range scattering.Comment: 5 pages, 5 figure

    Strains and pseudo-magnetic fields in circular graphene rings

    Full text link
    We demonstrate that circular graphene ring under a shear stress displays strong pseudo-magnetic fields. We calculate the pseudo-magnetic field both from continuum elasticity theory as well as molecular dynamics simulations. Stable wrinkles are induced by shear deformations and lead to enhancement of the pseudo-magnetic field. The strong pseudo-magnetic field found here can be observed by imaging graphene flake at the atomic level e.g. through scanning tunneling microscope.Comment: 11 pages, 8 figures. (Appendixes A and B are added) To appear in Phys. Rev.

    Interactions and superconductivity in heavily doped MoS2

    Get PDF
    We analyze the microscopic origin and the physical properties of the superconducting phase recently observed in MoS2_2. We show how the combination of the valley structure of the conduction band, the density dependence of the screening of the long range Coulomb interactions, the short range electronic repulsion, and the relative weakness of the electron-phonon interactions, makes possible the existence of a phase where the superconducting order parameter has opposite signs in different valleys, resembling the superconductivity found in the pnictides and cuprates

    Variational approach to the excitonic phase transition in graphene

    Full text link
    We analyze the Coulomb interacting problem in undoped graphene layers by using an excitonic variational ansatz. By minimizing the energy, we derive a gap equation which reproduces and extends known results. We show that a full treatment of the exchange term, which includes the renormalization of the Fermi velocity, tends to suppress the phase transition by increasing the critical coupling at which the excitonic instability takes place.Comment: 4 page

    Robustness of edge states in graphene quantum dots

    Get PDF
    We analyze the single particle states at the edges of disordered graphene quantum dots. We show that generic graphene quantum dots support a number of edge states proportional to circumference of the dot over the lattice constant. Our analytical theory agrees well with numerical simulations. Perturbations breaking electron-hole symmetry like next-nearest neighbor hopping or edge impurities shift the edge states away from zero energy but do not change their total amount. We discuss the possibility of detecting the edge states in an antidot array and provide an upper bound on the magnetic moment of a graphene dot.Comment: Added figure 6, extended discussion (version as accepted by Physical Review B
    • …
    corecore